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ABSTRACT: The Loess Plateau (LP) in China is sensitive to climate change because of its fragile ecological environment
and geographic features. This study presents a detailed assessment of the climate change trends over the LP from 1901 to
2100 based on the 1-km spatial resolution climate data generated through delta downscaling. The following results are drawn:
(1) Delta downscaling performs well in detecting the monthly precipitation and temperature over the LP based on the mean
absolute error between downscaled data and independent surface observations. Among the 28 general circulation models, the
GFDL-ESM2M and NorESM1-M models show the best performance in reproducing the monthly precipitation and temperature
in the future period, respectively. (2) The annual precipitation over the entire LP shows no significant trends in the historical
and future periods. By contrast, the annual temperature shows a significantly increasing trend with 0.097 ∘C/10 year in the
historical period (1901–2014) and with 0.113, 0.24, 0.355, and 0.558 ∘C/10 year in the future period (2015–2100) under the
RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively. (3) The significantly increasing trends in precipitation and
temperature at each grid of the LP present various spatial distributions in terms of their magnitude. The significant trend
magnitude calculated by the downscaled data has a larger range and a higher percentage of area – and is even observed
at a small area – compared with that calculated by the raw data. (4) The spatial results calculated by the downscaled data
provide more detailed information about the locations and percentages of area, both of which are valuable in assessing the
change trends in precipitation and temperature. These spatio-temporal results present the climate change trends over the LP in
detail and provide valuable insights for developing flexible adaptation and mitigation strategies to address the climate change
challenges in this region.
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1. Introduction

Climate change is at the forefront of scientific issues
and poses a significant challenge to human survival and
development, especially in China (Wang and Chen, 2014).
The Loess Plateau (LP) in China is the most developed
loess region in the world in terms of extent, thickness,
and depositional sequence; it has an area of approximately
0.64× 106 km2 and assumes important service functions
in China in terms of ecology and economy (Chen et al.,
2015). Over the last 50 years, the annual precipitation has
decreased and the air temperature has increased over the
LP (Bi et al., 2009; Wang et al., 2012; Sun et al., 2015).
These changes can damage the LP by altering its water
availability and increasing the instances of soil erosion,
droughts, and floods (Miao et al., 2016). Thus, the climate
change patterns in the LP in the historical and future
periods must be understood to develop suitable adaptation
and mitigation strategies that can address the challenges
resulting from these changes.
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General circulation models (GCMs) provide valuable
information on long-term climate projections at a global
to sub-continental scale (IPCC, 2013). The World Climate
Research Program’s Coupled Model Intercomparison
Project Phase 5 (CMIP5) provides a state-of-the-art
multi-model data set that has been used by the Intergov-
ernmental Panel on Climate Change for its fifth assessment
report. Improved models of CMIP5 are expected to per-
form better than those of the former phase CMIP3 (Taylor
et al., 2012). For example, CMIP5 models have smaller
bias than CMIP3 models in reproducing the atmospheric
downwards long-wave radiation (Ma et al., 2014) and
precipitation over China (Chen and Frauenfeld, 2014).
Despite showing improvements over CMIP3 models,
CMIP5 models still show remarkable biases in depicting
regional climate information. Previous studies (Chen
et al., 2012; Zhou et al., 2014) have identified significant
errors in the magnitude and trend of precipitation and
surface air temperature at a regional scale. Thus, to reduce
the biases in climate change, the existing global climate
data sets, such as the Climate Research Unit (CRU)
(Harris et al., 2014) 0.5∘ time series data set, can be
interpolated with weather station records when climate
change information in the historical period is available.
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Most of the present-day GCMs have a horizontal reso-
lution of a few hundred kilometres (Meehl et al., 2007).
Efforts have been made to downscale the CMIP3 and
CMIP5 model data sets to 0.5∘ (i.e. approximately 55 km)
across the globe (Brekke et al., 2013). However, simi-
lar to the CRU data set, spatial resolution continues to
limit the capability of GCM data sets to represent com-
plex topography, land surface characteristics, and other
processes in the climate system (Xu et al., 2017). This
condition also prevents the GCM and CRU data sets from
drawing realistic and reliable climate change information
at fine scales, which is imperative when developing suit-
able adaptation and mitigation strategies at the regional
to local scales (Giorgi et al., 2009). Therefore, downscal-
ing a climate data set using a dynamic downscaling model
(i.e. regional climate model) for GCM data or using a
statistical downscaling model for GCM and CRU data
is necessary because these models add the orographic
effects and calibrations of observed records to the data
(Mosier et al., 2014; Xu et al., 2017), which may reduce
the uncertainties in the raw data. Although dynamic down-
scaling can provide a mechanism for interpreting regional
climate change and output many climate variables, this
technique requires numerous inputs and computational
requirements (Brekke et al., 2013; Xu et al., 2017) and
sometimes cannot present reliable climate change infor-
mation at fine scales (Dosio et al., 2015; Xu et al., 2017).
Besides, to date, statistical downscaling can provide a
climate data set with a 1-km spatial resolution (Mosier
et al., 2014), which is hardly generated by dynamic down-
scaling. Thus, statistical downscaling can be adopted
to generate a high-spatial-resolution climate dataset in
the LP region.

Previous studies (Bi et al., 2009; Li et al., 2010; Li
et al., 2012b; Wang et al., 2012; Miao et al., 2016) have
assessed the climate change trends over the LP in terms of
near-surface air temperature and precipitation in the his-
torical and future periods. However, these studies have
been conducted at a station scale (Bi et al., 2009; Li
et al., 2010; Wang et al., 2012) or at a 0.5∘ spatial reso-
lution (Miao et al., 2016). Moreover, the climate change
information in the historical period has only been moni-
tored beginning in the 1960s, and most weather stations
in China have been established around that time. Long
time series of detailed spatial variations of climate change
trends in the region are largely unavailable, and such infor-
mation is important in developing flexible adaptation and
mitigation strategies that can address the climate change
issues in the LP.

The objectives of this study are (1) to generate his-
torical and future temperature and precipitation data
over the LP with a high-spatio-temporal resolution by
applying the statistical downscaling method on CRU
and GCM data; (2) to detect whether the downscaled
data have a higher reliability than the raw CRU and
GCM data; and (3) to assess the historical and future
climate change trends and their spatial variations over
the LP based on the raw/downscaled climate data from
1901 to 2100.

2. Data and methods

2.1. Study area

The LP region is situated in north China (33.7∘–41.3∘N,
100.8∘–114.6∘E) and traversed by the upper-middle
reaches of the Yellow River (Figure 1). The region starts
from the TaiHang Mountains in the east, reaches the
RiYue Mountain in the west, and borders on the QinLing
Mountains in the south and Yin Mountain in the north (Liu
et al., 2016). The LP has a warm or temperate continental
monsoon climate with extensive monsoonal influence. The
annual precipitation ranges from 200 mm in the northwest
to 750 mm in the southeast (Li et al., 2012b), 60–70%
of which falls from June to September in the form of
high-intensity storms (Wang et al., 2012). The annual
mean temperature ranges from 3.6 ∘C in the northwest to
14.3 ∘C in the southeast. A large diurnal temperature range
is observed throughout the year with dry and cold winters,
hot and humid summers, rapid temperature decrease in
autumn, and rapid temperature increase in spring. The
annual potential evaporation, which ranges from 865 to
1274 mm, in this area is estimated to be much higher
than the precipitation (Li et al., 2012a). The region spans
arid, semi-arid, and semi-humid zones and is considered a
semi-arid-to-semi-humid transitional zone that is sensitive
to climate change (Liu and Sang, 2013).

2.2. Data collection

The historical monthly precipitation and mean tempera-
ture data used in this study were obtained from the CRU
TS 3.23 data set with a 0.5∘ spatial resolution (Harris et al.,
2014). This data set presents the data for January 1901
to December 2014 in a time series. The GCM monthly
precipitation and mean temperature data used in this study
were obtained from the downscaled CMIP5 data set with
a 0.5∘ resolution (http://gdo-dcp.ucllnl.org/downscaled_
cmip_projections/). This data set was processed from
28 raw GCMs data using the bias correction and delta
downscaling methods described by Brekke et al. (2013).
Table 1 lists the basic information on the 28 models and
their associated institutions. This data set presents the data
for January 1950 to December 2100 in a time series; the
data from 1950 to 2005 are the historical data under the
historical emissions scenario, while the data from 2006 to
2100 are the future data under the future Representative
Concentration Pathway (RCP) scenarios (i.e. RCP2.6,
RCP4.5, RCP6.0, and RCP8.5 scenarios).

The high-resolution reference climatology data used in
this study were gridded data on a 1-km (approximately
30 arcseconds) resolution as elaborated by the Chinese
National Ecosystem Research Network (CNERN, www
.cnern.org.cn). These climatology data were processed
by using spatial interpolation and geographic infor-
mation systems with 740 national weather stations in
China and a 1-km digital elevation model (DEM). These
high-resolution reference climatology data, which cov-
ered each month of the years 1961–2000, include the
orographic effects and calibrations of observed climate
information records for each month.
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Figure 1. Location and DEM of the LP region in China and 113 national weather stations distributed across the rectangular region. [Colour figure
can be viewed at wileyonlinelibrary.com].

The surface observation data for monthly precipitation
and mean temperature were obtained from 113 national
weather stations in and around the LP (Figure 1; http://data
.cma.cn/); these data were used to evaluate the downscaled
monthly precipitation and mean temperature grids from
January 1991 to December 2014 in a time series (period
of the available data).

2.3. Statistical downscaling

The statistical downscaling framework includes regression
and delta downscaling methods. The regression method
constructs multiple linear regression relationships between
the raw GCM data and station observations in the histor-
ical period; these relationships are applied to future GCM
grid outputs (Li et al., 2012b; Timm et al., 2015). This
framework can generate substantial climate element data
in the future at target stations but cannot obtain a future
climate dataset with a high spatial resolution, thereby pre-
venting the drawing of detailed spatial variations at fine
scales. Meanwhile, the delta downscaling method uses a
low-resolution monthly time series and high-resolution
reference climatology as inputs; the high-resolution cli-
matology input must contain a physically representative,
fine-scale distribution of the meteorological variable over
the landscape (Brekke et al., 2013; Mosier et al., 2014).
Instead of directly interpolating low-spatial-resolution

sources (such as CRU and GCM data) to a higher spatial
resolution, delta downscaling incorporates high-resolution
orographic effects in the reference climatology that are
not represented in low-resolution input grids (Mosier
et al., 2014). Furthermore, instead of interpolation that
considers high-spatial-resolution DEM for CRU and
GCM data, delta downscaling incorporates calibrations of
observed records from multiple stations in the reference
climatology.

Delta downscaling is used with the data described in
the preceding section to produce monthly precipitation
and mean temperature grids for the years 1901–2100 with
a 1-km resolution. Figure 2 shows a rectangular region
(Figure 1) that includes the LP region to illustrate the com-
ponents and steps of delta downscaling for precipitation by
using the CRU 0.5∘ time series and CNERN 30-arcsecond
climatology data sets. The first step (Figure 2(a)) is to con-
struct a 0.5∘ climatology for each month from the 0.5∘ time
series data set. The low-resolution climatology is produced
using the period 1961–2000 because this range is used by
CNERN to construct its climatology data. A 0.5∘ anomaly
(Figure 2(b)) is then calculated. The anomaly for precipi-
tation is calculated as the ratio of the time series element
to the corresponding low-resolution climatology, while
the anomaly for temperature is calculated as the differ-
ence between the time series element and climatology. The

© 2017 Royal Meteorological Society Int. J. Climatol. (2017)

wileyonlinelibrary.com
http://data.cma.cn
http://data.cma.cn


S. PENG et al.

Table 1. Summary of the 28 general circulation models from CMIP5.

Model acronym Institution References

1 ACCESS1.0 Commonwealth Scientific and Industrial Research
Organization and Bureau of Meteorology, Australia

Marsland et al. (2013)

2 BCC-CSM1.1 Beijing Climate Center, China Meteorological
Administration, China

Xin et al. (2013)

3 BCC-CSM1.1(m) Beijing Climate Center, China Meteorological
Administration, China

Ren et al. (2016)

4 BNU-ESM Beijing Normal University, China Ji et al. (2014)
5 CanESM2 Canadian Centre for Climate Modelling and Analysis,

Canada
Chylek et al. (2011)

6 CESM1-BGC NSF/DOE NCAR, United States Long et al. (2013)
7 CESM1-CAM5 NSF/DOE NCAR, United States Neale et al. (2013)
8 CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici,

Italy
Scoccimarro et al. (2011)

9 CNRM-CM5 Centre National de Recherches Meteorologiques,
Meteo-France, France

Voldoire et al. (2013)

10 CSIRO-MK-3.6.0 Australian Commonwealth Scientific and Industrial
Research Organization, Australia

Rotstayn et al. (2010)

11 EC-EARTH EC-EARTH consortium, Europe Hazeleger et al. (2012)
12 FGOALS-g2 Institute of Atmospheric Physics, Chinese Academy of

Sciences, China
Zhou et al. (2013)

13 FIO-ESM The First Institution of Oceanography, SOA, China Qiao et al. (2013)
14 GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory, United

States
Donner et al. (2011)

15 GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory, United
States

Dunne et al. (2012)

16 GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory, United
States

Dunne et al. (2012)

17 GISS-E2-H-CC NASA Goddard Institute for Space Studies, United States Wang et al. (2015)
18 GISS-E2-R NASA Goddard Institute for Space Studies, United States Schmidt et al. (2006)
19 GISS-E2-R-CC NASA Goddard Institute for Space Studies, United States Wang et al. (2015)
20 HadCM3 Met Office Hadley Centre, UK Collins et al. (2001)
21 INMCM4.0 Institute for Numerical Mathematics, Russia Volodin et al. (2010)
22 IPSL-CM5A-LR Institut Pierre–Simon Laplace, France Dufresne et al. (2013)
23 MIROC4h Japan Agency for Marine–Earth Science and Technology,

University of Tokyo, and National Institute for
Environmental Studies (Japan)

Zhang et al. (2017)

24 MIROC5 Japan Agency for Marine–Earth Science and Technology,
University of Tokyo, and National Institute for
Environmental Studies (Japan)

Watanabe et al. (2010)

25 MIROC-ESM Japan Agency for Marine–Earth Science and Technology,
University of Tokyo, and National Institute for
Environmental Studies (Japan)

Watanabe et al. (2011)

26 MIROC-ESM-CHEM Japan Agency for Marine–Earth Science and Technology,
University of Tokyo, and National Institute for
Environmental Studies (Japan)

Watanabe et al. (2011)

27 MRI-CGCM3 Meteorological Research Institute, Japan Yukimoto et al. (2012)
28 NorESM1-M Norwegian Climate Centre, Norway Bentsen et al. (2013)

anomaly is then interpolated to the 30-arcsecond CNERN
grid through spatial interpolation (Figure 2(c)). The final
step in the delta method (Figure 2(d)) is transforming the
high-resolution anomaly back to an absolute surface by
scaling it using the CNERN climatology for the corre-
sponding month. This transformation undoes the creation
of the anomaly; therefore, multiplication is used for pre-
cipitation, while addition is used for temperature.

As illustrated in Figure 2(c), the anomaly grid can
be interpolated from the original to the high-resolution
coordinates by using many interpolation methods. Thus,
the delta downscaling framework not only employs

the interpolation method but also introduces the high-
resolution reference climatology data. The use of such
data represents the biggest difference between the delta
downscaling and statistical interpolation methods. This
study compared the nearest-neighbour interpolation,
bilinear interpolation, cubic spline interpolation, and bicu-
bic interpolation (Mosier et al., 2014), and applied these
interpolation methods using the interp2 function in Matlab.

2.4. Evaluation of delta downscaling

Spatial downscaling was conducted over the rectangu-
lar region in Figure 1. The surface observation records

© 2017 Royal Meteorological Society Int. J. Climatol. (2017)
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Figure 2. Schematic illustration of the spatial downscaling process. The downscaled precipitation field is constructed from CRU data in August 2014.
[Colour figure can be viewed at wileyonlinelibrary.com].

from the 113 national weather stations across the rectan-
gular region were used to independently verify the accu-
racy of the downscaled grids. The observation records
covering January 2001 to December 2014 were used to
verify the downscaled results from the CRU data, while
the observation records covering January 1991 to Decem-
ber 2005 were used to verify the downscaled results
from the GCM data. These observed records were also
used to verify the raw CRU and GCM data during the
same periods.

The average model performance error was quantified by
the mean absolute error (MAE), which is a more natural
measure of average error than the root-mean-square error
(Willmott and Matsuura, 2005; Wang and Chen, 2014).
This accuracy estimator can be mathematically written as:

MAE = 1
n

n∑
i=1

||Pi − Oi
|| (1)

where Pi is the downscaled or raw value, Oi is the observed
value, and n is the number of records of all validated
stations.

2.5. Trend analysis methods

The tests for detecting significant trends in climatologic
time series can be classified as either parametric or
nonparametric. Parametric trend tests require indepen-
dent and normally distributed data, while nonparametric
trend tests only require independent data (Gocic and
Trajkovic, 2013). We used two nonparametric methods
(Mann–Kendall and Sen’s slope estimator) to detect the
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Table 2. MAE of raw/downscaled monthly mean temperature and precipitation from 28 GCMs in January 1991 to December 2005
and CRU in January 2001 to December 2014.

Monthly precipitation (mm) Monthly temperature (∘C)

Np Bic Bil Near Spl Np Bic Bil Near Spl

ACCESS1-0 24.22 23.44 23.38 23.46 23.44 2.968 1.460 1.458 1.462 1.460
BCC-CSM1-1 24.71 23.92 23.89 23.94 23.92 2.877 1.419 1.418 1.419 1.419
BCC-CSM1-1-m 24.38 23.65 23.60 23.69 23.65 2.963 1.449 1.447 1.450 1.449
BNU-ESM 24.14 23.31 23.28 23.33 23.31 2.888 1.429 1.429 1.430 1.429
CanESM2 26.72 25.58 25.53 25.59 25.58 2.741 1.363 1.361 1.364 1.363
CESM1-BGC 24.94 23.23 23.16 23.27 23.23 2.942 1.434 1.432 1.435 1.434
CESM1-CAM5 24.00 23.27 23.20 23.30 23.27 2.875 1.392 1.390 1.392 1.392
CMCC-CM 24.75 24.05 23.99 24.08 24.05 3.142 1.484 1.482 1.484 1.484
CNRM-CM5 24.60 23.85 23.80 23.89 23.85 3.177 1.451 1.449 1.451 1.451
CSIRO-MK-3-6-0 23.44 22.60 22.54 22.59 22.60 3.045 1.424 1.422 1.425 1.424
EC-EARTH 25.34 24.66 24.60 24.71 24.66 3.089 1.444 1.442 1.444 1.444
FGOALS-g2 24.39 23.63 23.59 23.67 23.63 3.100 1.470 1.469 1.470 1.470
FIO-ESM 24.86 23.66 23.63 23.68 23.66 3.179 1.534 1.533 1.535 1.534
GFDL-CM3 24.44 23.66 23.63 23.71 23.66 2.993 1.383 1.382 1.384 1.384
GFDL-ESM2G 24.58 23.82 23.78 23.88 23.82 2.947 1.415 1.413 1.416 1.415
GFDL-ESM2M 23.09 22.39 22.35 22.43 22.39 2.969 1.425 1.423 1.426 1.425
GISS-E2-H-CC 24.70 23.94 23.90 23.99 23.94 3.056 1.499 1.498 1.500 1.499
GISS-E2-R 23.87 23.13 23.09 23.17 23.13 2.777 1.347 1.346 1.347 1.347
GISS-E2-R-CC 24.53 23.81 23.78 23.86 23.81 2.952 1.407 1.406 1.407 1.407
HadCM3 23.71 22.89 22.85 22.90 22.89 3.214 1.505 1.503 1.507 1.505
inmcm4 24.64 23.87 23.82 23.89 23.87 3.310 1.564 1.562 1.565 1.564
IPSL-CM5A-LR 24.11 23.24 23.20 23.25 23.24 3.307 1.549 1.548 1.550 1.549
MIROC4h 23.88 23.07 22.97 23.15 23.08 3.004 1.471 1.469 1.472 1.471
MIROC5 23.00 22.97 22.92 23.00 22.97 2.907 1.446 1.445 1.447 1.446
MIROC-ESM 25.50 24.68 24.63 24.69 24.68 2.888 1.379 1.377 1.380 1.379
MIROC-ESM-CHEM 24.67 23.93 23.89 23.94 23.93 3.384 1.600 1.599 1.600 1.600
MRI-CGCM3 25.07 24.14 24.09 24.17 24.15 3.335 1.571 1.570 1.571 1.571
NorESM1-M 24.05 23.16 23.12 23.18 23.17 2.713 1.343 1.342 1.344 1.343
CRU 15.16 14.27 14.25 14.28 14.27 1.665 0.801 0.798 0.806 0.801

Np represents the MAE between the raw GCM/CRU and observed data; Bic, Bil, Near, and Spl represent the bicubic, bilinear, nearest-neighbour,
and cubic spline interpolations used in the downscaled framework, respectively.

trends of the raw and downscaled climate data in each
grid over the LP. The Mann–Kendall trend test provides
a measure (ZMK) that indicates whether the long-term
change of a variable is significant (Atta-ur-Rahman and
Dawood, 2017). This study conducted a comparison
analysis at the 95% confidence level. The trend of the
time series is significant at the 95% confidence level when
|ZMK|> 1.96. ZMK > 1.96 denotes a significant increase,
while ZMK <−1.96 denotes a significant decrease. The
magnitude of temperature or precipitation trend was cal-
culated by the Sen’s slope estimator test (Atta-ur-Rahman
and Dawood, 2017).

3. Results

3.1. Evaluation of raw/downscaled temperature
and precipitation

Table 2 shows the MAE between the raw/downscaled and
observed monthly climate data. For CRU and each GCM
data, the MAE of the raw data is slightly greater than that of
the downscaled data. In the delta-downscaled framework,
the MAE under the bilinear interpolation is always the
smallest for the CRU and GCMs data. Specifically, among
the 28 GCMs, the GFDL-ESM2M and NorESM1-M
models have the smallest MAE in reproducing the

monthly precipitation and mean temperature over the
LP, respectively. Thus, these data for these two models
can be used to generate the high-spatial-resolution future
climate data in the delta downscaling framework. In
addition, the MAE of the raw/downscaled CRU data is
smaller than that of each raw/downscaled GCM data.
Thus, the CRU data must be selected to generate the
high-spatial-resolution historical climate data in the delta
downscaling framework.

Figures 3 and 4 compare the observed and raw/
downscaled values of monthly precipitation and mean
temperature; the raw/downscaled values of GCM data
are processed from the GFDL-ESM2M and NorESM1-M
models. The regression and correlation coefficients show
that (1) the downscaled data are closer to the observed val-
ues than the raw CRU and GCM data; (2) compared with
the downscaled precipitation data, the downscaled tem-
perature data are closer to the observed temperature values
for both CRU and GCM data; and (3) the CRU data are
closer to the observed values than the GCM data for both
downscaled and raw precipitation and temperature data.

3.2. Trends in precipitation

We used bilinear interpolation to downscale the CRU
and suitable GCM (i.e. GFDL-ESM2M and NorESM1-M
models) data over the LP for 1901–2100 to 1-km spatial

© 2017 Royal Meteorological Society Int. J. Climatol. (2017)
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Figure 3. Comparisons of the observed (x) and downscaled (y) values of monthly precipitation and mean temperature. The downscaled monthly
precipitation (a) and mean temperature (b) values are obtained from GFDL-ESM2M and NorESM1-M models, respectively.

Figure 4. Comparisons of the observed (x) and raw (y) values of monthly precipitation and mean temperature. The raw monthly precipitation (a) and
mean temperature (b) values are obtained from GFDL-ESM2M and NorESM1-M models, respectively.

© 2017 Royal Meteorological Society Int. J. Climatol. (2017)



S. PENG et al.

Figure 5. Change in annual precipitation of the entire LP from the reference period (1961–1990) to the historical and future periods (1901–2100),
where 1901–2014 is the historical period and 2015–2100 is the future period. [Colour figure can be viewed at wileyonlinelibrary.com].

resolution. The data during 1901–2014 were taken from
CRU and the data during 2015–2100 were taken from
the GFDL-ESM2M and NorESM1-M models. Based on
the downscaled monthly precipitation data, we calculated
the anomalies of annual precipitation over the LP region.
Relative to that during 1961–1990, the anomaly during
the historical period (1901–2014) ranges from −36.8 to
41.2%, while that during the future period (2015–2100)
ranges from −48.5 to 75.5% under the four RCP scenarios
(Figure 5). No significant differences were found between
the historical and future fluctuations in annual precipitation
(Figure 5). The Mann–Kendall test shows no significant
trends in the historical and future annual precipitation over
the entire LP using the raw/downscaled data.

To detect the detailed spatial variation of trends in annual
precipitation over the LP using the raw/downscaled data,
we performed Mann–Kendall and Sen’s slope estima-
tor tests at each grid. Figure 6 shows the spatial distri-
bution of the magnitude of trend during the historical
period (i.e. 114-year span) using the downscaled data.
Although this magnitude presents a strong spatial varia-
tion over the LP region, a significantly increasing trend
is only observed in the west of the LP region (Figure 6).
Furthermore, the corresponding magnitude ranges from
0.24 to 3.52 mm/10 year with a mean of 1.76 mm/10 year
in the zones with a significant trend, and these zones cover
3.10% of the LP region (Table 3). Compared with the
significant trend magnitude calculated by the downscaled
data, that calculated by the raw data has a narrower range
(0.67–1.4 mm/10 year), lower mean (1.08 mm/10 year),
and lower percentage of area (2.72%), although their coef-
ficients of variability are nearly the same (Table 3).

Figure 7 shows the spatial distribution of the magnitude
of trend during the future period (i.e. 86-year span) under
the four RCP scenarios using the downscaled data. A

Figure 6. Geographic distribution of the magnitude of trend for annual
precipitation (mm/10 year) in the historical period (1901–2014). The
closed solid line indicates where the trend significantly increases at the
95% confidence level. [Colour figure can be viewed at wileyonlinelibrary

.com].

significantly increasing trend is only observed in the south
of the LP with a 9.32% area under the RCP4.5 scenario
and in the west of the LP with a 0.14% area under the
RCP8.5 scenario (Figure 7). The corresponding magnitude
ranges from 7.06 to 41.11 mm/10 year with a mean of
13.81 mm/10 year under the RCP4.5 scenario and from 5.2
to 9.9 mm/10 year with a mean of 6.6 mm/10 year under
the RCP8.5 scenario (Table 3). In addition, the magnitude
under the RCP 4.5 scenario (22.65%) has a greater spatial
variation than that under the RCP8.5 scenario (10.71%),
while the magnitude during the historical period has a
greater spatial variation (26.81%) than that during the
future period (Table 3). Compared with the significant
trend magnitude calculated by the downscaled data, that
calculated by the raw data under the RCP4.5 scenario has
a narrower range (8.63–14.08 mm/10 year), lower mean
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Table 3. Summary of minimum (Min, mm/10 year), maximum (Max, mm/10 year), mean (Mean, mm/10 year), standard deviation
(SD, mm/10 year), coefficient of variability (CV), and percentage of area (PA) for the spatial distribution of the significant trend in

annual precipitation during the historical and future periods.

1901–2014 2015–2100

RCP2.6 RCP4.5 RCP6.0 RCP8.5

Min Raw 0.67 – 8.63 – –
Downscaled 0.24 – 7.06 – 5.15

Max Raw 1.40 – 14.08 – –
Downscaled 3.52 – 41.11 – 9.86

Mean Raw 1.08 – 10.40 – –
Downscaled 1.76 – 13.81 – 6.58

SD Raw 0.29 – 2.31 – –
Downscaled 0.47 – 3.13 – 0.71

CV Raw 26.55% – 22.23% – –
Downscaled 26.81% – 22.65% – 10.71%

PA Raw 2.72% – 8.17% – –
Downscaled 3.10% – 9.32% – 0.14%

Figure 7. Geographic distribution of the magnitude of trend for annual precipitation (mm/10 year) in the future period (2015–2100) under the four
RCP scenarios. The closed solid line indicates where the trend significantly increases at the 95% confidence level. [Colour figure can be viewed at

wileyonlinelibrary.com].

(10.4 mm/10 year), and lower percentage of area (8.17%),
although their coefficients of variability are nearly the
same (Table 3). Besides, the Mann–Kendall test shows no
significant trend for the raw precipitation data over the
entire LP under the RCP8.5 scenario (Table 3).

3.3. Trends in mean temperature

Similar to precipitation, we calculated the anomalies of
annual mean temperature over the LP region based on the
downscaled data and then performed Mann–Kendall and

Sen’s slope estimator tests for the annual mean temperature
at each grid on the basis of the raw/downscaled data.

Relative to that during 1961–1990, the anomalies dur-
ing the historical period (1901–2014) range from −0.992
to 1.843 ∘C (Figure 8). Meanwhile, the anomalies dur-
ing the future period (2015–2100) range from 0.016 to
3.046 ∘C with a mean of 1.878 ∘C under the RCP2.6 sce-
nario, from 0.545 to 4.125 ∘C with a mean of 2.390 ∘C
under the RCP4.5 scenario, from 0.382 to 4.468 ∘C with
a mean of 2.393 ∘C under the RCP6.0 scenario, and
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Figure 8. Change in annual mean temperature of the entire LP from the reference period (1961–1990) to the historical and future periods
(1901–2100), where 1901–2014 is the historical period and 2015–2100 is the future period. [Colour figure can be viewed at wileyonlinelibrary

.com].

from 0.52 to 6.296 ∘C with a mean of 3.318 ∘C under
the RCP8.5 scenario (Figure 8). Furthermore, the annual
mean temperature of the LP region based on the down-
scaled data presents a significantly increasing trend with
0.097 ∘C/10 year in the historical period and with 0.113,
0.24, 0.355, and 0.558 ∘C/10 year in the future period
under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenar-
ios, respectively. The significant trend calculated by the
raw data presents almost the same magnitudes as that cal-
culated by the downscaled data.

Figure 9 shows the spatial distribution of the magnitude
of trend for the annual mean temperature during the histor-
ical period based on the downscaled data. A significantly
increasing trend is observed in the zone apart from the west
over the LP region (Figure 9). The corresponding magni-
tude ranges from 0.021 to 0.172 ∘C/10 year with a mean
of 0.106 ∘C/10 year in the zone with a significant trend,
and this zone covers 91.30% of the LP region (Table 4).
Compared with the significant trend magnitude calculated
by the downscaled data, that calculated by the raw data
has a narrower range (0.026–0.167 ∘C/10 year) and lower
percentage of area (90.27%) although their coefficients of
variability and mean are nearly the same (Table 4).

Compared with those in the historical period, the signifi-
cantly increasing trends in the future period have a greater
percentage of area and magnitude of trend based on the
downscaled data (Figure 10 and Table 4). The correspond-
ing percentages of area are 97.80% under the RCP2.6
scenario and 100% under the RCP4.5, RCP6.0, and
RCP8.5 scenarios (Table 4). The corresponding magni-
tude ranges from 0.026 to 0.150 ∘C/10 year with a mean of
0.114 ∘C/10 year under the RCP2.6 scenario, from 0.179
to 0.306 ∘C/10 year with a mean of 0.243 ∘C/10 year under
the RCP4.5 scenario, from 0.283 to 0.405 ∘C/10 year with
a mean of 0.355 ∘C/10 year under the RCP6.0 scenario,

Figure 9. Geographic distribution of the magnitude of trend for annual
mean temperature (∘C/10 year) in the historical period (1901–2014). The
closed solid line indicates where the trend significantly increases at the
95% confidence level. [Colour figure can be viewed at wileyonlinelibrary

.com].

and from 0.505 to 0.623 ∘C/10 year with a mean of
0.558 ∘C/10 year under the RCP8.5 scenario (Table 4).
In addition, the magnitude during the historical period
has a greater spatial variation (26.83%) than that during
the future period under the four RCP scenarios (19.38,
12.29, 7.69, and 5.52%; Table 4). Compared with the
significant trend magnitude calculated by the downscaled
data under each RCP scenario, that calculated by the raw
data has a narrower range and lower/equal percentage of
area although their averaged values are nearly the same
(Table 4).

4. Discussion

This study evaluated the performances of raw and down-
scaled climate data sets using observed records and then
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Table 4. Summary of minimum (Min, ∘C/10 year), maximum (Max, ∘C/10 year), mean (Mean, ∘C/10 year), standard deviation (SD,
∘C/10 year), coefficient of variability (CV), and percentage of area (PA) for the spatial distribution of the significant trend in annual

temperature during the historical and future periods.

1901–2014 2015–2100

RCP2.6 RCP4.5 RCP6.0 RCP8.5

Min Raw 0.026 0.032 0.181 0.285 0.507
Downscaled 0.021 0.026 0.179 0.283 0.505

Max Raw 0.167 0.146 0.297 0.400 0.620
Downscaled 0.172 0.150 0.306 0.405 0.623

Mean Raw 0.107 0.112 0.243 0.354 0.558
Downscaled 0.106 0.114 0.243 0.355 0.558

SD Raw 0.029 0.028 0.030 0.028 0.031
Downscaled 0.029 0.022 0.030 0.027 0.031

CV Raw 26.87% 24.85% 12.40% 7.86% 5.59%
Downscaled 26.83% 19.38% 12.29% 7.69% 5.52%

PA Raw 90.27% 96.89% 100% 100% 100%
Downscaled 91.30% 97.80% 100% 100% 100%

Figure 10. Geographic distribution of the magnitude of trend for annual mean temperature (∘C/10 year) in the future period (2015–2100) under the
four RCP scenarios. The closed solid line indicates where the trend significantly increases at the 95% confidence level. [Colour figure can be viewed

at wileyonlinelibrary.com].

detected the climate trends based on these two data sets.
The MAE of raw data is always higher than that of
the downscaled data for the CRU and 28 GCMs data
sets (Table 2). This result implies that the delta down-
scaling framework not only produces highly detailed cli-
mate information at the fine scale but also reduces the
uncertainties in the CRU and 28 GCMs data sets. This
finding can be attributed to the orographic effects and the

calibrations of observed records from multiple stations
in the high-spatial-resolution reference climatology data.
The significant trend magnitude calculated by the down-
scaled data has a larger range and higher percentage of
area – and is even present at a small area – compared with
that calculated by the raw data (Tables 3 and 4). These
results imply that the downscaled data not only represent
high-spatial-resolution climate trends but are also more
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reliable than the raw data for studying climate trends.
Therefore, the downscaled data are more reasonable than
the raw data for studying climate trends.

This study employed delta downscaling to generate
monthly precipitation and mean temperature data with a
1-km spatial resolution from January 1901 to December
2100 by using the CRU and 28 GCM data sets with a
0.5∘ spatial resolution and the high-resolution climatology
representing the orographic effect. The MAE between the
downscaled data and the independent surface station obser-
vations indicates that delta downscaling performs well in
the study area. Wang and Chen (2014) used the delta
method to downscale 35 raw GCMs data to a 0.5∘ spatial
resolution in China; the MAE ranged from 10 to 80 mm
with a mean of approximately 50 mm for monthly precipi-
tation and from 1.6 to 5.7 ∘C with a mean of approximately
3.2 ∘C for monthly mean temperature. Compared with that
in Wang and Chen (2014), the MAE in the present study is
smaller and ranges from 22.35 to 25.53 mm with a mean
of 23.58 mm for monthly precipitation and from 1.342 to
1.600 ∘C with a mean of roughly 1.45 ∘C for monthly mean
temperature (Table 2). Wang and Chen (2014) also showed
that the model with the smallest MAE was EC-EARTH,
which is used to generate the 0.5∘-spatial-resolution tem-
perature and precipitation in China. The GFDL-ESM2M
and NorESM1-M models in the present study show the
best results in reproducing the monthly precipitation and
mean temperature over the LP, respectively, on the basis
of the MAE analysis. These differences may be attributed
to the fact that in this study, the high-resolution climatol-
ogy with a 1-km spatial resolution was adopted for down-
scaling and the surface station observations were used to
evaluate the downscaled results. This comparison implies
that the selections of high-resolution climatology and eval-
uation data are crucial when the delta downscaling frame-
work is adopted. Currently, WorldClim (Mosier et al.,
2014) and the climatology employed in this study remain
the best available high-resolution climatologies (1-km spa-
tial resolution) in the world and in China, respectively.

Compared with precipitation, the temperature over the
entire LP region has a larger fluctuation and shows a more
significantly increasing trend in the historical and future
periods (Figures 5 and 8). Specifically, in the historical
period, the west of the LP region showed significantly
increasing trends in annual precipitation and insignificant
trends in annual mean temperature, while the zones apart
from the west in the LP presented insignificant trends in
annual precipitation and significantly increasing trends in
annual mean temperature (Figures 6 and 9). These results
imply that the zones apart from the west in the LP region
suffered considerable water loss in the historical period. In
the future period, the south of the LP region presented sig-
nificantly increasing trends in annual precipitation under
the RCP4.5 scenario (Figure 7), and most of the LP region
presented significantly increasing trends in annual mean
temperature under the four RCP scenarios (Figure 10).
These results imply that the zones apart from the south
in the LP region will suffer considerable water loss in the
future period. Such water shortage in the historical and

future periods may threaten the native vegetation ecosys-
tem in the region, and the necessary adaptation and miti-
gation strategies must be adopted to address this threat.

The magnitudes of precipitation and temperature trends
in the historical and future periods demonstrate a very
strong spatial variability (Tables 3 and 4). The significant
trends in precipitation and temperature are mapped over
the LP, and their distributions present diverse charac-
teristics, especially in terms of location and percentage
of area (Figures 6, 7, 9, and 10). The findings of delta
downscaling reveal that the above detailed spatial results
differ from those presented in other climate change studies
that have mapped the climate variables (e.g. temperature
and precipitation) on the basis of the data from multiple
weather stations and by using geo-statistical interpolation
methods, such as inverse distance weighted interpola-
tion (Li et al., 2012a) and ordinary kriging interpolation
(Atta-ur-Rahman and Dawood, 2017). Overall, unlike
those from other studies, the spatial results in the present
study can be used to draw the detailed orographic effects
on temperature and precipitation as well as to generate
highly accurate information, such as location, percentage
of area, and other statistical indexes. The significant tem-
perature and precipitation trends in the future period under
the four RCP scenarios also show diverse spatial patterns
and statistical results (Figures 7 and 10 and Tables 3
and 4). The comparison among the three major uncertain-
ties in climate predictions that result from future natural
fluctuations, model responses, and emission scenarios
(Hawkins and Sutton, 2011) suggests that the above diver-
sity can be attributed to the uncertainties of various scenar-
ios (Ning and Bradley, 2016). In this study, the uncertainty
of the significantly increasing temperature trends increases
along with the emission scenarios, with the largest spread
being observed under the RCP8.5 scenario.

The trend magnitude may also depend on the time sub-
section. For instance, during the 1901–2014 period, the
annual mean temperature and annual precipitation over
entire LP region present a significantly increasing trend
with 0.097 ∘C/10 year (Figure 8) and a non-significantly
increasing trend with 0.46 mm/10 year (Figure 5), respec-
tively; however, the climate trends in the LP region
based on the observed records show that the annual
mean temperature presents a significantly increasing
trend with 0.38 ∘C/10 year during the 1961–2010 period,
while the annual precipitation presents a non-significantly
decreasing trend with 5.82 mm/10 year during the same
period (Wang et al., 2012). We also calculate the climate
trends during the 1961–2010 period, and the annual
mean temperature and annual precipitation over the
entire LP region present a significantly increasing trend
with 0.366 ∘C/10 year and a non-significantly decreas-
ing trend with 4.48 mm/10 year. The findings of Wang
et al. (2012) almost match our results. Therefore, time
subsection is an important factor in determining climate
trends. Besides, compared with the spatial distribution
of trend magnitude studied by Wang et al. (2012) using
weather station data, the spatial results in this study that
are obtained using downscaled data can present highly
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detailed information, including location, percentage of
area, and spatial variability.

5. Conclusions

This study presented a detailed assessment of the climate
change trends over the LP in the historical and future peri-
ods (1901–2100) on the basis of the high-spatio-temporal-
resolution climate data generated through delta downscal-
ing. The major findings are outlined as follows:

(1) The delta downscaling framework not only generates
highly detailed climate information at the fine scale but
also reduces the uncertainties in the CRU and GCMs
data sets. Among the 28 GCMs, the GFDL-ESM2M
and NorESM1-M models are deemed the most suit-
able for reproducing the future monthly precipitation
and mean temperature over the LP, respectively.

(2) The downscaled data not only represent high-spatial-
resolution climate trends but are also more reliable
than the raw data for studying the climate trends over
the LP region.

(3) The significantly increasing trends in precipitation and
temperature present various spatial distributions in
their magnitudes. The spatial results provide infor-
mation on locations and percentages of area, which
are valuable in assessing precipitation and temperature
change trends.

(4) Compared with precipitation, the temperature over
the entire LP region shows a larger fluctuation and
a more significantly increasing trend in the historical
and future periods. The zones apart from the west in
the LP region suffered from considerable water loss in
the historical period, while the zones apart from the
south in the LP region will suffer considerable water
loss in the future period. Necessary adaptation and
mitigation strategies must be adopted to address these
issues.
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